Se denomina buril a una herramienta manual de corte o marcado formada por una barra de acero templado terminada en una punta con un mango en forma de pomo que sirve fundamentalmente para cortar, marcar, ranurar o desbastar material en frío mediante el golpe con un martillo adecuado, o mediante presión con la palma de la mano. También se utilizó en las primeras formas de escritura.
miércoles, 25 de mayo de 2011
EL ESMERIL
Un esmeril angular, amoladora angular o radial es una herramienta manual impulsada para cortar, para esmerilar, y para pulir.
Un esmeril angular que se conoce popularmente por "la radial" se puede impulsar con un motor eléctrico, un motor de gasolina o aire comprimido. El motor impulsa una cabeza de engranajes en un ángulo recto en el cual está montado un disco abrasivo o un disco de corte más delgado los cuales pueden ser reemplazados cuando se desgastan. Los esmeriles angulares típicamente tienen un protector ajustable para su operación con cualquiera de las dos manos. Ciertas amoladoras angulares, dependiendo de su rango de velocidad, pueden utilizarse como lijadoras utilizando un disco lijador con un disco o almohadilla de apoyo. El sistema protector usualmente esta hecho de un plástico duro, resina fenólica o caucho de media dureza dependiendo de la cantidad de flexibilidad deseada.
LA ESCUABRA
Una escuadra es una plantilla con forma de triángulo rectángulo isósceles que se utiliza en dibujo técnico.1 Pueden ser de diferentes tamaños y colores o tener biseles en los cantos que permitan ser usadas con rapidógrafo. Estrictamente no deberían llevar escala gráfica al no ser herramientas de medición, pero algunos fabricantes las producen con una escala gráfica para usarse como instrumento de medición. Posee un ángulo de 90º y dos de 45º. Suele emplearse, junto a un cartabón o una regla, para trazar líneas paralelas y perpendiculares. Puede estar hecho de diversos materiales, aunque el más común es el plástico transparente.
EL MICROMETRO
El micrómetro, que también es denominado tornillo de Palmer, calibre Palmer o simplemente palmer, es un instrumento de medición cuyo nombre deriva etimológicamente de las palabras griegas μικρο (micros, pequeño) y μετρoν (metron, medición); su funcionamiento se basa en un tornillo micrométrico que sirve para valorar el tamaño de un objeto con gran precisión, en un rango del orden de centésimas o de milésimas de milímetro, 0,01 mm ó 0,001 mm (micra) respectivamente.
Para proceder con la medición posee dos extremos que son aproximados mutuamente merced a un tornillo de rosca fina que dispone en su contorno de una escala grabada, la cual puede incorporar un nonio. La longitud máxima mensurable con el micrómetro de exteriores es de 25 mm normalmente, si bien también los hay de 0 a 30, siendo por tanto preciso disponer de un aparato para cada rango de tamaños a medir: 0-25 mm, 25-50 mm, 50-75 mm...
Además, suele tener un sistema para limitar la torsión máxima del tornillo, necesario pues al ser muy fina la rosca no resulta fácil detectar un exceso de fuerza que pudiera ser causante de una disminución en la precisión.
EXPERTO EN LOGISTICA, EN UNA PROFESION DEL FUTURO
La profesión que más demandarán este año las empresas será la de director de sucursal bancaria, en tanto que la más cotizada será de la arquitecto con formación de postgrado y la más difícil de encontrar corresponderá a la de secretaria de dirección, según un estudio de Adecco, que sitúa al experto en logística como la profesión del presente y del futuro.
Adecco ha llegado a estas conclusiones tras analizar los perfiles más requeridos por sus 18.000 empresas clientes y después de evaluar el crecimiento que han registrado los principales sectores de la economía española.
Con un crecimiento del 4% anual y más de 400.000 trabajadores, el sector de la logística y transporte requiere cada vez más expertos encargados de planificar, organizar y controlar los canales de entrada y salida de material. Para este puesto, se requiere Ingeniería Técnica o Superior Industrial o Licenciatura en Empresariales o Económicas, formación de postgrado, experiencia mínima de dos años e inglés. La edad media de contratación oscila entre los 25 y los 35 años y el salario medio, entre los 30.000 y 35.000 euros anuales, pudiendo alcanzar los 45.000 euros para profesionales con más de cinco años de experiencia.
Profesiones del 2006El mismo informe identifica las tendencias más próximas, para 2006. Este año la profesión que más demandarán las empresas será la de director de sucursal bancaria, por la expansión de las redes de oficinas. Para este puesto, situado en una categoría de dirección empresarial media y cuyo salario medio es de 40.000 a 60.000 euros anuales, se precisan licenciados universitarios con diferentes titulaciones (Ciencias Empresariales, Económicas y Derecho, principalmente) y una experiencia de entre tres a cinco años, no siendo imprescindibles los idiomas. La edad media de contratación para estos puestos es de 30 a 35 años.
Según Adecco, las compañías constructoras y las inmobiliarias, que están siendo una de las grandes favorecidas por el ciclo económico, seguirán "acaparando" este año una parte importante de los procesos de elección. Así, el perfil de alto directivo más demandado en 2006 será el de arquitecto con formación de postgrado (máster en dirección y gestión, etc.). Los requisitos para este puesto pasan por ser licenciado en arquitectura, tener una experiencia de unos diez años y hablar idiomas (inglés y francés son muy valorados). La retribución media suele estar en unos 120.000 euros anuales, más un variable orientado a resultados. La edad media de los contratados en cargos de alta dirección es de 40 a 45 años.
Por último, los puestos de secretaria de dirección serán los más difíciles de cubrir, debido a que las empresas cada vez son más exigentes. En concreto, demandan secretarias ejecutivas que combinen sus competencias técnicas con la iniciativa necesaria para solucionar problemas más allá de las tareas convencionales. Sin embargo, explica Adecco, no existe aún la suficiente oferta de personas capacitadas para este puesto, de tal forma que la contratación de la persona adecuada puede llevar hasta un mes de plazo
En este puesto se precisan, además de conocimientos en informática y manejo de diferentes programas, una experiencia de cuatro años, formación de postgrado y ser bilingüe en inglés (también se valora el francés e incluso un tercer idioma, como el alemán). La edad media de contratación suele ser 30 años y la remuneración anual se sitúa entre los 27.000 y los 60.000 euros.
Adecco ha llegado a estas conclusiones tras analizar los perfiles más requeridos por sus 18.000 empresas clientes y después de evaluar el crecimiento que han registrado los principales sectores de la economía española.
Con un crecimiento del 4% anual y más de 400.000 trabajadores, el sector de la logística y transporte requiere cada vez más expertos encargados de planificar, organizar y controlar los canales de entrada y salida de material. Para este puesto, se requiere Ingeniería Técnica o Superior Industrial o Licenciatura en Empresariales o Económicas, formación de postgrado, experiencia mínima de dos años e inglés. La edad media de contratación oscila entre los 25 y los 35 años y el salario medio, entre los 30.000 y 35.000 euros anuales, pudiendo alcanzar los 45.000 euros para profesionales con más de cinco años de experiencia.
Profesiones del 2006El mismo informe identifica las tendencias más próximas, para 2006. Este año la profesión que más demandarán las empresas será la de director de sucursal bancaria, por la expansión de las redes de oficinas. Para este puesto, situado en una categoría de dirección empresarial media y cuyo salario medio es de 40.000 a 60.000 euros anuales, se precisan licenciados universitarios con diferentes titulaciones (Ciencias Empresariales, Económicas y Derecho, principalmente) y una experiencia de entre tres a cinco años, no siendo imprescindibles los idiomas. La edad media de contratación para estos puestos es de 30 a 35 años.
Según Adecco, las compañías constructoras y las inmobiliarias, que están siendo una de las grandes favorecidas por el ciclo económico, seguirán "acaparando" este año una parte importante de los procesos de elección. Así, el perfil de alto directivo más demandado en 2006 será el de arquitecto con formación de postgrado (máster en dirección y gestión, etc.). Los requisitos para este puesto pasan por ser licenciado en arquitectura, tener una experiencia de unos diez años y hablar idiomas (inglés y francés son muy valorados). La retribución media suele estar en unos 120.000 euros anuales, más un variable orientado a resultados. La edad media de los contratados en cargos de alta dirección es de 40 a 45 años.
Por último, los puestos de secretaria de dirección serán los más difíciles de cubrir, debido a que las empresas cada vez son más exigentes. En concreto, demandan secretarias ejecutivas que combinen sus competencias técnicas con la iniciativa necesaria para solucionar problemas más allá de las tareas convencionales. Sin embargo, explica Adecco, no existe aún la suficiente oferta de personas capacitadas para este puesto, de tal forma que la contratación de la persona adecuada puede llevar hasta un mes de plazo
En este puesto se precisan, además de conocimientos en informática y manejo de diferentes programas, una experiencia de cuatro años, formación de postgrado y ser bilingüe en inglés (también se valora el francés e incluso un tercer idioma, como el alemán). La edad media de contratación suele ser 30 años y la remuneración anual se sitúa entre los 27.000 y los 60.000 euros.
CAMPO DE ACCION
- El campo de acción del ingeniero electromecánico es muy amplio. En la región existen gran cantidad de industrias en las que el diseño, operación y mantenimiento de sistemas electromecánicos y de manufactura requieren personal altamente calificado en estas áreas. El seguimiento de egresados muestra que el programa tiene uno de los más altos índices de ocupación.
- Pero no sólo la industria es el campo de desarrollo del Ingeniero Electromecánico ya que ha quedado demostrado que varios de los egresados se desempeñen el ejercicio libre de su profesión como contratistas o consultores así como en la investigación y en la docencia.
- Otra opción para el egresado es continuar su formación realizando estudios de maestría o doctorado. En el mismo campus se ofrece la maestría en Mecatrónica y el Doctorado en Ingeniería con la línea de investigación en mecatrónica. Ambos posgrados están dentro del padrón de excelencia de CONACYT lo que permite otorgar becas.
martes, 24 de mayo de 2011
ACCESORIOS DE LAS TALADORAS
Las taladradoras utilizan como accesorios principales:
- Portabrocas.
- Pinzas de fijación de brocas.
- Utillajes para posicionar y sujetar las piezas.
- Plantilla con casquillos para la guía de las brocas.
- Granete
- Mordazas de sujección de piezas
- Elementos robotizados para la alimentación de piezas y transfer de piezas.
- Afiladora de brocas
Portabrocas
El portabrocas es el dispositivo que se utiliza para fijar la broca en la taladradora cuando las brocas tienen el mango cilíndrico. El portabrocas va fijado a la máquina con un mango de cono Morse según sea el tamaño del portabrocas.
Los portabrocas se abren y cierran de forma manual, aunque hay algunos que llevan un pequeño dispositivo para poder ser apretados con una llave especial. Los portabrocas más comunes pueden sujetar brocas de hasta 13 mm de diámetro. Las brocas de diámetro superior llevan un mango de cono morse y se sujetan directamente a la taladradora.
PRODUCION DE AGUJEROS
Los factores principales que caracterizan un agujero desde el punto de vista de su mecanizado son:
- Diámetro
- Calidad superficial y tolerancia
- Material de la pieza
- Material de la broca
- Longitud del agujero
- Condiciones tecnológicas del mecanizado
- Cantidad de agujeros a producir
- Sistema de fijación de la pieza en el taladro.
Casi la totalidad de agujeros que se realizan en las diferentes taladradoras que existen guardan relación con la tornillería en general, es decir la mayoría de agujeros taladrados sirven para incrustar los diferentes tornillos que se utilizan para ensamblar unas piezas con otras de los mecanismos o máquinas de las que forman parte.
Según este criterio hay dos tipos de agujeros diferentes los que son pasantes y atraviesan en su totalidad la pieza y los que son ciegos y solo se introducen una longitud determinada en la pieza sin llegarla a traspasar, tanto unos como otros pueden ser lisos o pueden ser roscados.
Respecto de los agujeros pasantes que sirven para incrustar tonillos en ellos los hay de entrada avellanada, para tornillos de cabeza plana, agujeros de dos diámetros para insertar tornillos allen y agujeros cilíndricos de un solo diámetro con la cara superior refrentada para mejorar el asiento de la arandela y cabeza del tornillo. El diámetro de estos agujeros corresponde con el diámetro exterior que tenga el tornillo.
Respecto de los agujeros roscados el diámetro de la broca del agujero debe ser la que corresponda de acuerdo con el tipo de rosca que se utilice y el diámetro nominal del tornillo. En los tornillos ciegos se debe profundizar más la broca que la longitud de la rosca por problema de la viruta del macho de roscar.
TALADRO DE BANCO
La taladradora es una máquina herramienta donde se mecanizan la mayoría de los agujeros que se hacen a las piezas en los talleres mecánicos. Destacan estas máquinas por la sencillez de su manejo. Tienen dos movimientos: El de rotación de la broca que le imprime el motor eléctrico de la máquina a través de una transmisión por poleas y engranajes, y el de avance de penetración de la broca, que puede realizarse de forma manual sensitiva o de forma automática, si incorpora transmisión para hacerlo.
Se llama taladrar a la operación de mecanizado que tiene por objeto producir agujeros cilíndricos en una pieza cualquiera, utilizando como herramienta una broca. La operación de taladrar se puede hacer con un taladro portátil, con una máquina taladradora, en un torno, en una fresadora, en un centro de mecanizado CNC o en una mandrinadora.
De todos los procesos de mecanizado, el taladrado es considerado como uno de los procesos más importantes debido a su amplio uso y facilidad de realización, puesto que es una de las operaciones de mecanizado más sencillas de realizar y que se hace necesario en la mayoría de componentes que se fabrican.
Las taladradoras descritas en este artículo, se refieren básicamente a las utilizadas en las industrias metalúrgicas para el mecanizado de metales, otros tipos de taladradoras empleadas en la cimentaciones de edificios y obras públicas así como en sondeos mineros tienen otras características muy diferentes y serán objeto de otros artículos específicos.
lunes, 23 de mayo de 2011
LA PRENSA
La prensa es una máquina herramienta que tiene como finalidad lograr la deformación permanente o incluso cortar un determinado material, mediante la aplicación de una carga.
Una de las causas que han hecho posible la producción y popularidad de muchos objetos de uso diario y de lujo que actualmente consideramos como de utilización normal en nuestra vida, es la aplicación creciente de las prensas a la producción en masa. Uno de los ejemplos más notables que podemos poner en este sentido es el desarrollo de la industria de fabricación de automóviles. Los primeros automóviles se fabricaron con relativamente poco equipo y maquinando cada una de las partes metálicas que actualmente se obtienen en el proceso que nos ocupa.
Es notable observar el trabajo de una prensa de gran tamaño que de un solo golpe nos produce el techo de un automóvil cuya forma puede ser sencilla y que sale de la prensa sin un arañazo o falla, a pesar de la importancia del trabajo efectuado y de la velocidad de la operación, la prensa es capaz de producir piezas semejantes cada 12 segundos.
Para la producción en masa, las prensas son empleadas cada día en mayor número, sustituyendo a otras máquinas. Existe además la razón adicional de que con una buena operación y calidad de las prensas, se pueden obtener productos de mucha homogeneidad, con diferencias de acabado entre unas y otras piezas de 0.002" y aun menos, lo cual es una buena tolerancia hasta para piezas maquinadas.
El secreto de la economía de operación en las prensas estriba fundamentalmente en el número de piezas que se produzcan. No es económico fabricar un costoso dado para producir una pocas piezas, pero cuando se produzcan 100 000 ó un millón de piezas, bien puede justificarse la fabricación o compra de un dado costoso, ya que este se amortiza a través de un elevado número de unidades. Hay prensas que pueden producir 600 piezas por minuto o más.
En esta forma se puede ver que las prensas a pesar de su alto costo pueden sustituir ventajosamente los sistemas anteriores de fundir las piezas y acabarlas maquinándolas. Claro que en cada caso hay que hacer un estudio económico siguiendo los lineamientos generales apuntados anteriormente, antes de tomar una decisión.
Prensa de tornillo de Presión mediana.
Prensas neumáticas a baja presión de concepción moderna y compacta, con compresor silencioso incorporado y mando electrónico totalmente autónomo
* Es curioso saber que hay casos en que los dados son mas caros que la propia prensa. *
Para el operario que controla la pieza y ve transformarse el pedazo de lámina en una pieza terminada en pocos segundos y en una sola operación, el trabajo es simple y fácil y si es un buen mecánico las herramientas o dados utilizados le parecerán muy sencillos.. Sin embargo, poner en marcha satisfactoriamente la producción de esas piezas habrá costado seguramente mucho dinero y los mejores esfuerzos de los ingenieros, especialista y técnicos.
El progreso de la técnica de fabricación con prensas está íntimamente ligado al progreso de las técnicas de laminación de metales, que ha permitido obtener láminas y soleras de diferentes metales cada día más uniformes con técnicas de fabricación más sencillas y tolerancias cada vez menores. En el diseño de prensas y dados hay mucho trabajo experimental, mucho más de lo necesario normalmente en otras industrias.
Los metales pueden ser formados plásticamente en compresión o en tensión dentro de ciertos límites, recuperando su forma inicial una vez que el esfuerzo de deformación desaparece, si este se ha mantenido dentro del límite elástico. El límite elástico de un material disminuye bajo condiciones repetidas de esfuerzo. Cuando los metales se someten a esfuerzos mas allá de su límite elástico quedan deformados permanentemente. Si la carga aplicada continúa, la deformación del metal sigue aumentando plásticamente hasta que tiene lugar la ruptura.
Las prensas de corte llevan al material a un esfuerzo más allá de su resistencia última al corte. Las prensas de doblado y embutido emplean una fuerza que produce un esfuerzo intermedio entre el límite elástico que debe ser excedido, y la resistencia última que no debe de sobrepasarse, por lo que la dureza y el endurecimiento de los metales son de especial importancia para el trabajo de las prensas.
El aumento de la dureza o resistencia a la deformación de los metales resultan de un cambio en la estructura interna de los mismos. Este cambio puede tener lugar por la fuerza bruta del trabajo en frío (Embutido, laminado, etc.) y puede también lograrse con un tratamiento térmico.
Una prensa troqueladora es una máquina en la cual materiales laminados pueden ser troquelados, doblados, planchados, cortados, embutidos, perforados, etc.
La acción de las prensas se lleva a cabo por medio de una herramienta que es impulsada a presión contra el material laminado. La herramienta puede ser maciza o hueca, afilada o sin filo y de formas variadas según el caso.
Si clasificamos a las prensas de acuerdo al mecanismo de conducción, se pueden clasificar en mecánicas o hidráulicas, pudiendo ser las primeras operadas manualmente, en el caso más elemental, y con motor en la mayoría de los casos. El funcionamiento de las prensas operadas con motor está basado en el siguiente principio:
El motor hace girar un volante de la prensa que está unido al cigüeñal de la misma directamente o por medio de engranes o bandas, operándose con auxilio de un embrague de fricción; Este embrague es accionado por medio de un pedal o una estación de botones. El embrague se desconecta automáticamente después de cada revolución, a no ser que el operador mantenga oprimido el pedal, en cuyo caso la prensa repite el trabajo. Después de que el embrague desconecta al volante, un freno detiene el movimiento del propio cigüeñal. Una biela transmite el movimiento del cigüeñal a una parte móvil de la prensa o ariete, deslizándose éste en unas guías.
Las prensas manejadas con el pie generalmente son llamadas prensas de pedal, son usadas solo para trabajos livianos. Las prensas de manivela, son el tipo más común por su simplicidad. Son usadas para la mayoría las operaciones de perforado, recorte y de estirado simple. Las prensas de doble manivela están provistas de un método para mover los soportes de discos o las matrices de acción múltiple. Las de conducción excéntrica se usan sólo donde se necesita un solo martinete de golpe corto. Las de acción de leva están provistas de un reposo, en la parte inferior del golpe, por esta razón a veces se usan para accionar los anillos de sostén del disco en las prensas de estampado. Las de conducción por charnela son usadas donde se requieren grandes adelantos mecánicos junto a una acción rápida, como puede ser en el acuñado, cortado o en el modelado Guerin. Los mecanismos de palanca acodillada son usados principalmente en las prensas de estirado para accionar el soporte de discos.
Las prensas hidráulicas son producidas en varios tipos y tamaños. Debido a que pueden proveerse de casi ilimitada capacidad, la mayoría de las prensas más grandes son de este tipo. El uso de varios cilindros hidráulicos permite la aplicación de fuerzas en el martinete en varios puntos, y proveen de la fuerza y ritmo necesario al soporte de discos. Las prensas hidráulicas de alta velocidad proporcionan más de 600 golpes por minuto, y se utilizan para operaciones de corte de alta velocidad.
EL TORNO
Se denomina torno (del latín tornus, y este del griego τόρνος, giro, vuelta)[1] a un conjunto de máquinas herramienta que permiten mecanizar piezas de forma geométrica de revolución. Estas máquinas-herramienta operan haciendo girar la pieza a mecanizar (sujeta en el cabezal o fijada entre los puntos de centraje) mientras una o varias herramientas de corte son empujadas en un movimiento regulado de avance contra la superficie de la pieza, cortando la viruta de acuerdo con las condiciones tecnológicas de mecanizado adecuadas. Desde el inicio de la Revolución industrial, el torno se ha convertido en una máquina básica en el proceso industrial de mecanizado.
La herramienta de corte va montada sobre un carro que se desplaza sobre unas guías o rieles paralelos al eje de giro de la pieza que se tornea, llamado eje Z; sobre este carro hay otro que se mueve según el eje X, en dirección radial a la pieza que se tornea, y puede haber un tercer carro llamado charriot que se puede inclinar, para hacer conos, y donde se apoya la torreta portaherramientas. Cuando el carro principal desplaza la herramienta a lo largo del eje de rotación, produce el cilindrado de la pieza, y cuando el carro transversal se desplaza de forma perpendicular al eje de simetría de la pieza se realiza la operación denominada refrentado.
Los tornos copiadores, automáticos y de control numérico llevan sistemas que permiten trabajar a los dos carros de forma simultánea, consiguiendo cilindrados cónicos y esféricos. Los tornos paralelos llevan montado un tercer carro, de accionamiento manual y giratorio, llamado charriot, montado sobre el carro transversal. Con el charriot inclinado a los grados necesarios es posible mecanizar conos. Encima del charriot va fijada la torreta portaherramientas.
ELECTROMECANICA
la electromecánica es la combinación de las ciencias del electromagnetismo de la ingeniería eléctrica y la ciencia de la mecánica. La mecatrónica es la disciplina de la ingeniería que combina la mecánica, la electrónica y la tecnología de la información, entre otras cosas, como programación a niveles elevados.
Los dispositivos electromecánicos son los que combinan partes eléctricas y mecánicas para conformar su mecanismo. Ejemplos de estos dispositivos son los motores eléctricos y los dispositivos mecánicos movidos por estos, así como las ya obsoletas calculadoras mecánicas y máquinas de sumar; los relés; las válvulas a solenoide; y las diversas clases de interruptores y llaves de selección eléctricas.
viernes, 20 de mayo de 2011
CIRCUITOS ELECTRONICOS
Se denomina circuito electrónico a una serie de elementos o componentes eléctricos (tales como resistencias, inductancias, condensadores y fuentes) o electrónicos, conectados eléctricamente entre sí con el propósito de generar, transportar o modificar señales electrónicas. Los circuitos electrónicos o eléctricos se pueden clasificar de varias maneras:
Por el tipo de información | Por el tipo de régimen | Por el tipo de señal | Por su configuración |
---|---|---|---|
Analógicos Digitales Mixtos | Periódico Transitorio Permanente | De corriente continua De corriente alterna Mixtos | Serie Paralelo Mixtos |
RESISTENCIA
Es la propiedad física mediante la cual todos los materiales tienden a oponerse al flujo de la corriente. La unidad de este parámetro es el Ohmio (Ω). No debe confundirse con el componente resistor.
CORRIENTE ELECTRICA
También denominada intensidad, es el flujo de electrones libres a través de un conductor o semiconductor en un sentido. La unidad de medida de este parámetro es el amperio (A). Al igual que existen tensiones continuas o alternas, las intensidades también pueden ser continuas o alternas, dependiendo del tipo de tensión que se utiliza para generar estos flujos de corriente.
TENSION
Es la diferencia de potencial generada entre los extremos de un componente o dispositivo eléctrico. También podemos decir que es la energía capaz de poner en movimiento los electrones libres de un conductor o semiconductor. La unidad de este parámetro es el voltio (V). Existen dos tipos de tensión: la continua y la alterna.
- Tensión continua (VDC) –Es aquella que tiene una polaridad definida, como la que proporcionan las pilas, baterías y fuentes de alimentación.
- Tensión Alterna (VAC) .- –Es aquella cuya polaridad va cambiando o alternando con el transcurso del tiempo. Las fuentes de tensión alterna más comunes son los generadores y las redes de energía doméstica
SEÑALES ELECTRONICAS
Es la representación de un fenómeno físico o estado material a través de una relación establecida; las entradas y salidas de un sistema electrónico serán señales variables.
En electrónica se trabaja con variables que toman la forma de Tensión o corriente estas se pueden denominar comúnmente señales.Las señales primordialmente pueden ser de dos tipos:
- Variable analógica–Son aquellas que pueden tomar un número infinito de valores comprendidos entre dos límites. La mayoría de los fenómenos de la vida real dan señales de este tipo. (presión, temperatura, etc.)
- Variable digital– También llamadas variables discretas, entendiéndose por estas, las variables que pueden tomar un número finito de valores. Por ser de fácil realización los componentes físicos con dos estados diferenciados, es este el número de valores utilizado para dichas variables, que por lo tanto son binarias. Siendo estas variables más fáciles de tratar (en lógica serían los valores V y F) son los que generalmente se utilizan para relacionar varias variables entre sí y con sus estados anteriores.
SISTEMA ELECTROMECANICO
Un sistema electrónico es un conjunto de circuitos que interactúan entre sí para obtener un resultado. Una forma de entender los sistemas electrónicos consiste en dividirlos en las siguientes partes:
- Entradas o Inputs – Sensores (o transductores) electrónicos o mecánicos que toman las señales (en forma de temperatura, presión, etc.) del mundo físico y las convierten en señales de corriente o voltaje. Ejemplo: El termopar, la foto resistencia para medir la intensidad de la luz, etc.
- Circuitos de procesamiento de señales – Consisten en piezas electrónicas conectadas juntas para manipular, interpretar y transformar las señales de voltaje y corriente provenientes de los transductores.
- Salidas o Outputs – Actuadores u otros dispositivos (también transductores) que convierten las señales de corriente o voltaje en señales físicamente útiles. Por ejemplo: un display que nos registre la temperatura, un foco o sistema de luces que se encienda automáticamente cuando esté oscureciendo.
Básicamente son tres etapas: La primera (transductor), la segunda (circuito procesador) y la tercera (circuito actuador).
Como ejemplo supongamos un televisor. Su entrada es una señal de difusión recibida por una antena o por un cable. Los circuitos de procesado de señales del interior del televisor extraen la información sobre el brillo, el color y el sonido de esta señal. Los dispositivos de salida son un tubo de rayos catódicos que convierte las señales electrónicas en imágenes visibles en una pantalla y unos altavoces. Otro ejemplo puede ser el de un circuito que ponga de manifiesto la temperatura de un proceso, el transductor puede ser un termocouple, el circuito de procesamiento se encarga de convertir la señal de entrada en un nivel de voltaje (comparador de voltaje o de ventana) en un nivel apropiado y mandar la información decodificándola a un display donde nos dé la temperatura real y si esta excede un límite preprogramado activar un sistema de alarma (circuito actuador) para tomar las medida pertinentes.
HISTORIA DE LA ELECTROMECANICA
Se considera que la electrónica comenzó con el diodo de vacío inventado por John Ambrose Fleming en 1904. El funcionamiento de este dispositivo está basado en el efecto Edison. Edison fue el primero que observó en 1883 la emisión termoiónica, al colocar una lámina dentro de una bombilla para evitar el ennegrecimiento que producía en la ampolla de vidrio el filamento de carbón. Cuando se polarizaba positivamente la lámina metálica respecto al filamento, se producía una pequeña corriente entre el filamento y la lámina. Este hecho se producía porque los electrones de los átomos del filamento, al recibir una gran cantidad de energía en forma de calor, escapaban de la atracción del núcleo (emisión termoiónica) y, atravesando el espacio vacío dentro de la bombilla, eran atraídos por la polaridad positiva de la lámina.
El otro gran paso lo dio Lee De Forest cuando inventó el triodo en 1906. Este dispositivo es básicamente como el diodo de vacío, pero se le añadió una rejilla de control situada entre el cátodo y la placa, con el objeto de modificar la nube electrónica del cátodo, variando así la corriente de placa. Este fue un paso muy importante para la fabricación de los primeros amplificadores de sonido, receptores de radio, televisores, etc.
Conforme pasaba el tiempo, las válvulas de vacío se fueron perfeccionando y mejorando, apareciendo otros tipos, como los tetrodos (válvulas de cuatro electrodos), los pentodos (cinco electrodos), otras válvulas para aplicaciones de alta potencia, etc. Dentro de los perfeccionamientos de las válvulas se encontraba su miniaturización.
Pero fue definitivamente con el transistor, aparecido de la mano de Bardeen y Brattain, de la Bell Telephone, en 1948, cuando se permitió aún una mayor miniaturización de aparatos tales como las radios. El transistor de unión apareció algo más tarde, en 1949. Este es el dispositivo utilizado actualmente para la mayoría de las aplicaciones de la electrónica. Sus ventajas respecto a las válvulas son entre otras: menor tamaño y fragilidad, mayor rendimiento energético, menores tensiones de alimentación, etc. El transistor no funciona en vacío como las válvulas, sino en un estado sólido semiconductor (silicio), razón por la que no necesita centenares de voltios de tensión para funcionar.
A pesar de la expansión de los semiconductores, todavía se siguen utilizando las válvulas en pequeños círculos audiófilos, porque constituyen uno de sus mitos[1] más extendidos.
El transistor tiene tres terminales (el emisor, la base y el colector) y se asemeja a un triodo: la base sería la rejilla de control, el emisor el cátodo, y el colector la placa. Polarizando adecuadamente estos tres terminales se consigue controlar una gran corriente de colector a partir de una pequeña corriente de base.
En 1958 se desarrolló el primer circuito integrado, que alojaba seis transistores en un único chip. En 1970 se desarrolló el primer microprocesador, Intel 4004. En la actualidad, los campos de desarrollo de la electrónica son tan vastos que se ha dividido en varias disciplinas especializadas. La mayor división es la que distingue la electrónica analógica de la electrónica digital.
QUE ES ELECTROMECANICA
La electrónica es la rama de la física y especialización de la ingeniería, que estudia y emplea sistemas cuyo funcionamiento se basa en la conducción y el control del flujo microscópico de los electrones u otras partículas cargadas eléctricamente.
Utiliza una gran variedad de conocimientos, materiales y dispositivos, desde los semiconductores hasta las válvulas termoiónicas. El diseño y la construcción de circuitos electrónicos para resolver problemas prácticos forma parte de la electrónica y de los campos de la ingeniería electrónica, electromecánica y la informática en el diseño de software para su control. El estudio de nuevos dispositivos semiconductores y su tecnología se suele considerar una rama de la física, más concretamente en la rama de ingeniería de materiales.
Suscribirse a:
Entradas (Atom)